Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells.

Identifieur interne : 000129 ( Main/Exploration ); précédent : 000128; suivant : 000130

Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells.

Auteurs : Biao Gu [République populaire de Chine] ; Shiv D. Kale ; Qinhu Wang ; Dinghe Wang ; Qiaona Pan ; Hua Cao ; Yuling Meng ; Zhensheng Kang ; Brett M. Tyler ; Weixing Shan

Source :

RBID : pubmed:22076138

Descripteurs français

English descriptors

Abstract

BACKGROUND

Effector proteins of biotrophic plant pathogenic fungi and oomycetes are delivered into host cells and play important roles in both disease development and disease resistance response. How obligate fungal pathogen effectors enter host cells is poorly understood. The Ps87 gene of Puccinia striiformis encodes a protein that is conserved in diverse fungal pathogens. Ps87 homologs from a clade containing rust fungi are predicted to be secreted. The aim of this study is to test whether Ps87 may act as an effector during Puccinia striiformis infection.

METHODOLOGY/PRINCIPAL FINDINGS

Yeast signal sequence trap assay showed that the rust protein Ps87 could be secreted from yeast cells, but a homolog from Magnaporthe oryzae that was not predicted to be secreted, could not. Cell re-entry and protein uptake assays showed that a region of Ps87 containing a conserved RXLR-like motif [K/R]RLTG was confirmed to be capable of delivering oomycete effector Avr1b into soybean leaf cells and carrying GFP into soybean root cells. Mutations in the Ps87 motif (KRLTG) abolished the protein translocation ability.

CONCLUSIONS/SIGNIFICANCE

The results suggest that Ps87 and its secreted homologs could utilize similar protein translocation machinery as those of oomycete and other fungal pathogens. Ps87 did not show direct suppression activity on plant defense responses. These results suggest Ps87 may represent an "emerging effector" that has recently acquired the ability to enter plant cells but has not yet acquired the ability to alter host physiology.


DOI: 10.1371/journal.pone.0027217
PubMed: 22076138
PubMed Central: PMC3208592


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells.</title>
<author>
<name sortKey="Gu, Biao" sort="Gu, Biao" uniqKey="Gu B" first="Biao" last="Gu">Biao Gu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Northwest A&F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kale, Shiv D" sort="Kale, Shiv D" uniqKey="Kale S" first="Shiv D" last="Kale">Shiv D. Kale</name>
</author>
<author>
<name sortKey="Wang, Qinhu" sort="Wang, Qinhu" uniqKey="Wang Q" first="Qinhu" last="Wang">Qinhu Wang</name>
</author>
<author>
<name sortKey="Wang, Dinghe" sort="Wang, Dinghe" uniqKey="Wang D" first="Dinghe" last="Wang">Dinghe Wang</name>
</author>
<author>
<name sortKey="Pan, Qiaona" sort="Pan, Qiaona" uniqKey="Pan Q" first="Qiaona" last="Pan">Qiaona Pan</name>
</author>
<author>
<name sortKey="Cao, Hua" sort="Cao, Hua" uniqKey="Cao H" first="Hua" last="Cao">Hua Cao</name>
</author>
<author>
<name sortKey="Meng, Yuling" sort="Meng, Yuling" uniqKey="Meng Y" first="Yuling" last="Meng">Yuling Meng</name>
</author>
<author>
<name sortKey="Kang, Zhensheng" sort="Kang, Zhensheng" uniqKey="Kang Z" first="Zhensheng" last="Kang">Zhensheng Kang</name>
</author>
<author>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
</author>
<author>
<name sortKey="Shan, Weixing" sort="Shan, Weixing" uniqKey="Shan W" first="Weixing" last="Shan">Weixing Shan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22076138</idno>
<idno type="pmid">22076138</idno>
<idno type="doi">10.1371/journal.pone.0027217</idno>
<idno type="pmc">PMC3208592</idno>
<idno type="wicri:Area/Main/Corpus">000125</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000125</idno>
<idno type="wicri:Area/Main/Curation">000125</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000125</idno>
<idno type="wicri:Area/Main/Exploration">000125</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells.</title>
<author>
<name sortKey="Gu, Biao" sort="Gu, Biao" uniqKey="Gu B" first="Biao" last="Gu">Biao Gu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Northwest A&F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kale, Shiv D" sort="Kale, Shiv D" uniqKey="Kale S" first="Shiv D" last="Kale">Shiv D. Kale</name>
</author>
<author>
<name sortKey="Wang, Qinhu" sort="Wang, Qinhu" uniqKey="Wang Q" first="Qinhu" last="Wang">Qinhu Wang</name>
</author>
<author>
<name sortKey="Wang, Dinghe" sort="Wang, Dinghe" uniqKey="Wang D" first="Dinghe" last="Wang">Dinghe Wang</name>
</author>
<author>
<name sortKey="Pan, Qiaona" sort="Pan, Qiaona" uniqKey="Pan Q" first="Qiaona" last="Pan">Qiaona Pan</name>
</author>
<author>
<name sortKey="Cao, Hua" sort="Cao, Hua" uniqKey="Cao H" first="Hua" last="Cao">Hua Cao</name>
</author>
<author>
<name sortKey="Meng, Yuling" sort="Meng, Yuling" uniqKey="Meng Y" first="Yuling" last="Meng">Yuling Meng</name>
</author>
<author>
<name sortKey="Kang, Zhensheng" sort="Kang, Zhensheng" uniqKey="Kang Z" first="Zhensheng" last="Kang">Zhensheng Kang</name>
</author>
<author>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
</author>
<author>
<name sortKey="Shan, Weixing" sort="Shan, Weixing" uniqKey="Shan W" first="Weixing" last="Shan">Weixing Shan</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Basidiomycota (immunology)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oomycetes (immunology)</term>
<term>Oomycetes (metabolism)</term>
<term>Oomycetes (microbiology)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Cells (microbiology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Immunity (genetics)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (immunology)</term>
<term>Plant Leaves (microbiology)</term>
<term>Protein Sorting Signals (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Soybeans (microbiology)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (immunologie)</term>
<term>Cellules végétales (microbiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (immunologie)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Immunité des plantes (génétique)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Oomycetes (immunologie)</term>
<term>Oomycetes (microbiologie)</term>
<term>Oomycetes (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Signaux de triage des protéines (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Soja (microbiologie)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Immunity</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Immunité des plantes</term>
<term>Maladies des plantes</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Basidiomycota</term>
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Basidiomycota</term>
<term>Oomycetes</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Cellules végétales</term>
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Oomycetes</term>
<term>Soja</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Oomycetes</term>
<term>Plant Cells</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oomycetes</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Conserved Sequence</term>
<term>Host-Pathogen Interactions</term>
<term>Molecular Sequence Data</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Protein Sorting Signals</term>
<term>Protein Transport</term>
<term>Sequence Homology, Amino Acid</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Interactions hôte-pathogène</term>
<term>Motifs d'acides aminés</term>
<term>Phylogenèse</term>
<term>Phénotype</term>
<term>Signaux de triage des protéines</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Transport des protéines</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Effector proteins of biotrophic plant pathogenic fungi and oomycetes are delivered into host cells and play important roles in both disease development and disease resistance response. How obligate fungal pathogen effectors enter host cells is poorly understood. The Ps87 gene of Puccinia striiformis encodes a protein that is conserved in diverse fungal pathogens. Ps87 homologs from a clade containing rust fungi are predicted to be secreted. The aim of this study is to test whether Ps87 may act as an effector during Puccinia striiformis infection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDINGS</b>
</p>
<p>Yeast signal sequence trap assay showed that the rust protein Ps87 could be secreted from yeast cells, but a homolog from Magnaporthe oryzae that was not predicted to be secreted, could not. Cell re-entry and protein uptake assays showed that a region of Ps87 containing a conserved RXLR-like motif [K/R]RLTG was confirmed to be capable of delivering oomycete effector Avr1b into soybean leaf cells and carrying GFP into soybean root cells. Mutations in the Ps87 motif (KRLTG) abolished the protein translocation ability.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS/SIGNIFICANCE</b>
</p>
<p>The results suggest that Ps87 and its secreted homologs could utilize similar protein translocation machinery as those of oomycete and other fungal pathogens. Ps87 did not show direct suppression activity on plant defense responses. These results suggest Ps87 may represent an "emerging effector" that has recently acquired the ability to enter plant cells but has not yet acquired the ability to alter host physiology.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22076138</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>03</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells.</ArticleTitle>
<Pagination>
<MedlinePgn>e27217</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0027217</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Effector proteins of biotrophic plant pathogenic fungi and oomycetes are delivered into host cells and play important roles in both disease development and disease resistance response. How obligate fungal pathogen effectors enter host cells is poorly understood. The Ps87 gene of Puccinia striiformis encodes a protein that is conserved in diverse fungal pathogens. Ps87 homologs from a clade containing rust fungi are predicted to be secreted. The aim of this study is to test whether Ps87 may act as an effector during Puccinia striiformis infection.</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">Yeast signal sequence trap assay showed that the rust protein Ps87 could be secreted from yeast cells, but a homolog from Magnaporthe oryzae that was not predicted to be secreted, could not. Cell re-entry and protein uptake assays showed that a region of Ps87 containing a conserved RXLR-like motif [K/R]RLTG was confirmed to be capable of delivering oomycete effector Avr1b into soybean leaf cells and carrying GFP into soybean root cells. Mutations in the Ps87 motif (KRLTG) abolished the protein translocation ability.</AbstractText>
<AbstractText Label="CONCLUSIONS/SIGNIFICANCE" NlmCategory="CONCLUSIONS">The results suggest that Ps87 and its secreted homologs could utilize similar protein translocation machinery as those of oomycete and other fungal pathogens. Ps87 did not show direct suppression activity on plant defense responses. These results suggest Ps87 may represent an "emerging effector" that has recently acquired the ability to enter plant cells but has not yet acquired the ability to alter host physiology.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Biao</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kale</LastName>
<ForeName>Shiv D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Qinhu</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Dinghe</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Qiaona</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meng</LastName>
<ForeName>Yuling</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Zhensheng</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tyler</LastName>
<ForeName>Brett M</ForeName>
<Initials>BM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shan</LastName>
<ForeName>Weixing</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>11</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021382">Protein Sorting Signals</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059828" MajorTopicYN="N">Plant Cells</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="N">Plant Immunity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021382" MajorTopicYN="N">Protein Sorting Signals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22076138</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0027217</ArticleId>
<ArticleId IdType="pii">PONE-D-11-17680</ArticleId>
<ArticleId IdType="pmc">PMC3208592</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2928-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:137-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Oct 1;198(1-2):289-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9370294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:399-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(8):e2875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Aug;45 Suppl 1:S63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Oct;5(10):1272-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2009 Jan;11(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18783481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Nov;10(6):735-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19849781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2009;9 Suppl 1:S2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19278550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:233-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1388-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 May;24(5):543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9128-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12872003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):399-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1998 Dec;88(12):1315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):748-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):2017-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Feb;12(2):187-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21199568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18447959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Feb;11(2):61-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16406302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1118-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2064-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Apr;23(4):425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2009;9 Suppl 1:S3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19278551</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cao, Hua" sort="Cao, Hua" uniqKey="Cao H" first="Hua" last="Cao">Hua Cao</name>
<name sortKey="Kale, Shiv D" sort="Kale, Shiv D" uniqKey="Kale S" first="Shiv D" last="Kale">Shiv D. Kale</name>
<name sortKey="Kang, Zhensheng" sort="Kang, Zhensheng" uniqKey="Kang Z" first="Zhensheng" last="Kang">Zhensheng Kang</name>
<name sortKey="Meng, Yuling" sort="Meng, Yuling" uniqKey="Meng Y" first="Yuling" last="Meng">Yuling Meng</name>
<name sortKey="Pan, Qiaona" sort="Pan, Qiaona" uniqKey="Pan Q" first="Qiaona" last="Pan">Qiaona Pan</name>
<name sortKey="Shan, Weixing" sort="Shan, Weixing" uniqKey="Shan W" first="Weixing" last="Shan">Weixing Shan</name>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
<name sortKey="Wang, Dinghe" sort="Wang, Dinghe" uniqKey="Wang D" first="Dinghe" last="Wang">Dinghe Wang</name>
<name sortKey="Wang, Qinhu" sort="Wang, Qinhu" uniqKey="Wang Q" first="Qinhu" last="Wang">Qinhu Wang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Gu, Biao" sort="Gu, Biao" uniqKey="Gu B" first="Biao" last="Gu">Biao Gu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000129 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000129 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22076138
   |texte=   Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22076138" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020